NO activation of guanylyl cyclase.
نویسندگان
چکیده
Nitric oxide (NO)-sensitive guanylyl-cyclase (GC) is the most important receptor for the signaling molecule NO. Activation of the enzyme is brought about by binding of NO to the prosthetic heme group. By monitoring NO-binding and catalytic activity simultaneously, we show that NO activates GC only if the reaction products of the enzyme are present. NO-binding in the absence of the products did not activate the enzyme, but yielded a nonactivated species with the spectral characteristics of the active form. Conversion of the nonactivated into the activated conformation of the enzyme required the simultaneous presence of NO and the reaction products. Furthermore, the products magnesium/cGMP/pyrophosphate promoted the release of the histidine-iron bond during NO-binding, indicating reciprocal communication of the catalytic and ligand-binding domains. Based on these observations, we present a model that proposes two NO-bound states of the enzyme: an active state formed in the presence of the products and a nonactivated state. The model not only covers the data reported here but also consolidates results from previous studies on NO-binding and dissociation/deactivation of GC.
منابع مشابه
Soluble guanylyl cyclase activation with HMR1766 attenuates platelet activation in diabetic rats.
OBJECTIVE Platelet activation significantly contributes to cardiovascular morbidity and mortality in diabetes. An association between impaired NO-mediated platelet inhibition and platelet activation has recently been demonstrated in experimental diabetes. Guanylyl cyclase activation enhances the reduced signaling via the NO/cGMP pathway. We investigated whether chronic guanylyl cyclase activati...
متن کاملThe linker region in receptor guanylyl cyclases is a key regulatory module: mutational analysis of guanylyl cyclase C.
Receptor guanylyl cyclases are multidomain proteins, and ligand binding to the extracellular domain increases the levels of intracellular cGMP. The intracellular domain of these receptors is composed of a kinase homology domain (KHD), a linker of approximately 70 amino acids, followed by the C-terminal guanylyl cyclase domain. Mechanisms by which these receptors are allosterically regulated by ...
متن کاملNO-independent stimulation or activation of soluble guanylyl cyclase during early reperfusion limits infarct size
AIMS Guanylyl cyclase-cyclic guanosine monophosphate signalling plays an important role in endogenous cardioprotective signalling. The aim was to assess the potential of direct pharmacological activation and stimulation of soluble guanylyl cyclase, targeting different redox states of the enzyme, to limit myocardial necrosis during early reperfusion. METHODS AND RESULTS Rat isolated hearts wer...
متن کاملThe Dictyostelium MAP kinase kinase DdMEK1 regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase.
We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that ...
متن کاملEffect of selective inhibition of soluble guanylyl cyclase on the K(Ca) channel activity in coronary artery smooth muscle.
Activation of a soluble guanylyl cyclase plays an important role in nitric oxide (NO)-induced vasodilation. Recently, we have reported that NO increases the calcium-activated potassium (K(Ca)) channel activity in vascular smooth muscle cells from coronary arteries. The present study examined the role of the soluble guanylyl cyclase in the control of basal activity of the K(Ca) channels and in m...
متن کاملGuanylyl cyclase: NO hits its target.
The NO receptor, NO-sensitive guanylyl cyclase, plays a key role in the NO/cGMP signal-transduction cascade. Two isoforms of the enzyme are currently known, the widely distributed vascular alpha1beta1 isoform and the neuronal alpha2beta1 isoform predominantly expressed in brain. Interaction with the PSD-95 (postsynaptic density protein-95) family of scaffolding proteins targets the neuronal alp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 23 22 شماره
صفحات -
تاریخ انتشار 2004